Как научить ребенка делению. Практические методы для дошкольников. - Чевостик

Как научить ребенка делению. Практические методы для дошкольников.

Прежде чем ваш ребенок отправится в первый класс ему необходимо освоить азы арифметики.

Готовы ли вы узнать о делении? В математике деление – это разделение чисел на равные группы.

Первоначально ему необходимо научиться правильно, понимать задание, а так же решать его в необходимой последовательности.

Лучше всего изначально научить ребенка складывать, вычитать и умножать, а уж только потом делить.

Самое главное вы должны понимать, что для того чтобы ребенок понимал как выполнить то или иное действие ему необходимо все демонстрировать наглядно.

В данной статье мы подробно поговорим о том, как объяснить ребенку деление.

Как объяснить ребенку деление?

  • Дети дошкольного возраста

На самом деле, делить ребенок начинает еще в самом маленьком возрасте. Просто он еще до конца не осознает, что он участвует в данном процессе.

Малыши-дошколята вовлекаются в процесс деления с самого раннего возраста, например, когда угощают конфетами друзей, делятся игрушками в песочнице. 

Поэтому задача родителей заключается в том, чтобы обобщить этот детский опыт для освоения азов арифметики, дать понимание принципа деления, то есть разделения предметов на равные доли. 

При этом базовыми знаниями, необходимыми для освоения деления в дошкольном возрасте, является понимание, что такое целое, больше/меньше.

Если с этими понятиями ребёнок знаком, то можно вооружаться играми и на их основе поэтапно объяснять деление.

Урок математики для детей: “деление”

Математический торт

Идея родилась из моих воспоминаний о школе. Как ни странно и деление и дроби нам объясняли именно через разрезание чего-то на куски.

Можно испечь торт, а можно просто разрезать яблоко или поделить апельсин на дольки. И поели витаминов и научились делению.

Делим поровну

Для начала нужно показать малышу на доступном для его понимания уровне, что такое деление, используя наглядность. В этом поможет игра «Тебе и мне поровну».

Инструкция:

  1. Малыш получает 6 конфет.
  2. Взрослый просит поделить конфеты на двоих так, чтобы у каждого было одинаковое количество.
  3. Ребёнок раскладывает конфеты по одной, пересчитывая их в обеих кучках.
  4. После того, как конфеты поделены, юный математик ещё раз пересчитывает их в каждой кучке, а затем считает, сколько сладостей всего.
  5. Количество «делителей» можно увеличивать, но «делимое» всегда должно делиться без остатка. Так у ребёнка формируется представление о том, что такое поровну.

Деление с остатком

Освоив деление без остатка, можно переходить к следующему этапу — игре «Всем поровну и «хвостик».

Инструкция:

  • Ребёнок получает 4 яблока.
  • Взрослый просит разделить их поровну между тремя членами семьи.
  • Оставшееся яблоко является остатком, который получается тогда, когда поровну поделить нельзя.

Разобравшись с делением поровну и с остатком, можно переходить к освоению абстрактного деления, то есть вычислениям с использованием цифр, а не конфет-яблок-игрушек. 

Для этого нужно сказать, что первое число — это то, что мы делим: конфеты, игрушки, яблоки, а второе — участники этого деления, то есть члены семьи, друзья. 

Но главное здесь, сколько предметов в итоге будет у участников.

Что нужно для освоения деления в младшем школьном возрасте

Деление — это не первое арифметическое действие, которое осваивают дети. Поэтому, прежде чем браться за «делимое-делитель-частное», нужно обязательно выяснить, знает ли ребёнок разряды чисел и понимает ли принципы:

  • сложения;
  • вычитания;
  • умножения.

По аналогии с таблицей умножения, существует таблица деления, которую также можно заучить. Однако методисты склоняются к тому, что гораздо важнее понимание ребёнком механизмов выпонения арифметического действия, чем механическое заучивание.

Эффективные способы объяснения деления школьникам

Все способы объяснения можно условно поделить на академичные и образные. Первые опираются на цифры, то есть записываются в виде арифметических примеров, вторые — на конкретные предметы: конфеты, мячи и т. д., которые умозрительно делятся между людьми, игрушками.

Деление на основе знания таблицы умножения

Для понимания сути деления стоит обратиться к вычислениям с опорой на таблицу умножения.

Инструкция:

  1. Записываем пример: 2 х 5 = 10.
  2. Берём 10 монет и просим поделить их на двоих — получается две стопки по 5 монет.
  3. Далее 10 монет делим на пятерых — получается 5 стопок по 2 монеты.
  4. Вывод — при делении мы выясняем, сколько раз каждый множитель помещается в произведении.

На этом приёме разъясняем понятийную базу: то число, которое делится, называется делимое, то число, на которое делится — делителем, а результат — частным.

Поскольку деление обратно умножению, то второе может проверить результат первого.

Инструкция:

  1. Делимое делим на делитель, то есть 10 : 2.
  2. Получаем частное — 5.
  3. Проверяем умножением, то есть частное умножаем на делитель — 5 х 2.
  4. Получаем 10, что в исходном примере является делимым.

Деление двузначных чисел на однозначные

Чтобы разделить двузначное число, не являющееся произведением таблицы умножения, на однозначное, нужно каждую цифру делимого разделить на делитель и записать первое частное десятками, а второе — единицами. Например, 86 : 2.

Инструкция:

  1. Делим 8 на 2. Получаем 4.
  2. Делим 6 на 2. Получаем 3.
  3. Ответ — 43.
  4. Проверяем — 43 х 2 = 86.

Деление способом группирования

Суть этого способа деления заключается в подсчёте количества групп равных делителю, которые помещаются в делимое. Результат будет частным.

Инструкция:

  • Задача состоит в распределении мячей между командами. Решаем пример — 30 : 3.
  • Распределим 30 мячей между тремя командами — обводим тройки.
  • Считаем количество групп троек — 10. Каждой команде достанется по 10 мячей.
  • Вывод — 30 : 3 = 10.

Как объяснить деление в столбик

Поскольку деление может быть без остатка, а может быть с остатком, рассмотрим два варианта объяснение такого арифметического действия.

Деление без остатка

Инструкция:

  • Решим пример 396 : 3
  • Записываем делимое, справа рисуем повёрнутую на левый бок букву Т и в верхнем «окошке» вписываем делитель — 3.
  • Начинаем с сотен. 3 делится на 3 без остатка, получаем 1. Вписываем результат под делителем.
  • Проверяем — 1 х 3 получаем 3, вписываем 3 под сотней и производим вычитание. Остатка нет. Подводим черту.
  • Приступаем к десяткам. 9 : 3 получаем 3. Записываем 3 рядом с 1.
  • Проверяем — 3 х 3 получаем 9, вписываем 9 под чертой, производим вычитание. Остатка нет. Подводим черту.
  • Работаем с единицами. 6 : 3 получаем 2. Записываем 2 рядом с 13.
  • Проверяем — 2 х 3 получаем 6, вписываем 6 под чертой, вычитаем. Остатка нет.
  • Результат — 132.

Видео для школьников

Ссылка на основную публикацию